Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 10(23): 10415-10433, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929357

RESUMO

Background: Chronic kidney diseases (CKD) are usually associated with dyslipidemia. Statin therapy has been primarily recommended for the prevention of cardiovascular risk in patients with CKD; however, the effects of statins on kidney disease progression remain controversial. This study aims to investigate the effects of statin treatment on renal handling of water in patients and in animals on a high-fat diet. Methods: Retrospective cohort patient data were reviewed and the protein expression levels of aquaporin-2 (AQP2) and NLRP3 inflammasome adaptor ASC were examined in kidney biopsy specimens. The effects of statins on AQP2 and NLRP3 inflammasome components were examined in nlrp3-/- mice, 5/6 nephroectomized (5/6Nx) rats with a high-fat diet (HFD), and in vitro. Results: In the retrospective cohort study, serum cholesterol was negatively correlated to eGFR and AQP2 protein expression in the kidney biopsy specimens. Statins exhibited no effect on eGFR but abolished the negative correlation between cholesterol and AQP2 expression. Whilst nlrp3+/+ mice showed an increased urine output and a decreased expression of AQP2 protein after a HFD, which was moderately attenuated in nlrp3 deletion mice with HFD. In 5/6Nx rats on a HFD, atorvastatin markedly decreased the urine output and upregulated the protein expression of AQP2. Cholesterol stimulated the protein expression of NLRP3 inflammasome components ASC, caspase-1 and IL-1ß, and decreased AQP2 protein abundance in vitro, which was markedly prevented by statins, likely through the enhancement of ASC speck degradation via autophagy. Conclusion: Serum cholesterol level has a negative correlation with AQP2 protein expression in the kidney biopsy specimens of patients. Statins can ameliorate cholesterol-induced inflammation by promoting the degradation of ASC speck, and improve the expression of aquaporin in the kidneys of animals on a HFD.


Assuntos
Aquaporina 2/análise , Dislipidemias/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Adulto , Animais , Aquaporina 2/metabolismo , Biópsia , Colesterol/sangue , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Dislipidemias/sangue , Dislipidemias/complicações , Dislipidemias/imunologia , Feminino , Taxa de Filtração Glomerular , Humanos , Inflamassomos/antagonistas & inibidores , Inflamassomos/imunologia , Inflamassomos/metabolismo , Rim/imunologia , Rim/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/imunologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/imunologia , Estudos Retrospectivos
2.
Nephron ; 144(2): 96-108, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31661702

RESUMO

BACKGROUND: Chloroquine (CQ), a classic autophagy inhibitor, is used clinically for malaria prophylaxis and pulmonary hypertension treatment. The adverse effects of CQ on morphological and functional changes in the kidney were investigated in the current study due to CQ accumulation in the kidney. METHODS: Twelve male Sprague-Dawley rats were randomly divided into 2 groups for 4 weeks: group 1, control (n = 6); and group 2, CQ administration group (50 mg-1·kg per day ip; n = 6). Serum aldosterone and vasopressin were measured by radioimmunoassay. Immunofluorescence was used to colocalize Tunel with aquaporin 1, aquaporin 2 (AQP2), and Tamm-Horsfall protein. Expression of AQP2 and mineralocorticoid (MR) was detected by western blot and immunohistochemistry. RESULTS: In the present study, 4 weeks of CQ administration were shown to induce severe kidney injury, including glomerular sclerosis and tubular cells apoptosis, especially distal tubular cells. Decreased expression of LC3II/I and p-AKT was demonstrated in CQ-treated rats. Glomerular and proximal tubule injury were associated with impaired autophagy flux, and distal tubule injury may be associated with downregulated cyclic adenosine monophosphate (cAMP)/PKA/AKT signaling. Both MR and AQP2, which are mainly located in the distal tubule and collecting duct, were significantly reduced in CQ-treated rats, thus leading to increased exosomal secretion of AQP2 in urine. Additionally, chronic CQ administration increased aldosterone and vasopressin levels in serum, but lowered the blood pressure, glomerular filtration rate, and urine concentration. CONCLUSIONS: CQ administration damages glomerular, proximal tubule autophagy, and severe distal tubular cells apoptosis by inhibiting cAMP/PKA/AKT signaling.


Assuntos
Autofagia/fisiologia , Cloroquina/toxicidade , Rim/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Aquaporina 2/análise , Autofagia/efeitos dos fármacos , AMP Cíclico/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Rim/patologia , Rim/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de Mineralocorticoides/análise , Transdução de Sinais/efeitos dos fármacos
3.
Biochem Biophys Res Commun ; 509(1): 114-118, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30578077

RESUMO

Recently, the cellular origin of the connecting tubule (CNT) has been genetically characterized. The CNT is a segment between two embryonically different structures, the collecting duct originating from ureteric bud (UB), and the nephron derived from the cap mesenchyme. However, the cellular detail at the initial connection is limited. The present study demonstrated that the initial connection was composed of cells which were closely associated with the renal vesicle (RV), the initial nephron, and connected with the basal epithelium of the terminal UB tip at discrete points. The identification of the RV and UB tip was based on tracing of tubules on serial epoxy sections at mouse embryonic day 17.5. The cells at the initial connection were characterized by 1) irregularly-shaped nuclei and cells with cytoplasmic processes, 2) electron dense nuclei, 3) abundant intercellular spaces, 4) extensive cell-cell contacts with cell junctions, often zonulae adherences and occasionally focal fusion of opposing plasma membranes, and 5) numerous mitochondria, densely packed rosette-like polyribosomes, and widespread rER in the cytoplasm. Moreover, the tracing revealed that a terminal UB tip frequently connected to two nephrons at different developing stages. The UB tips, the initial connections, and the distal tubules of the S-shaped bodies did not express Na+-Cl- cotransporter, H+-ATPase, or aquaporin 2, while they were expressed in immature CNT of the capillary-loop stage nephrons throughout the kidney development. Consequently, the cells at the initial connection exhibit the morphological features suggestive of energy demanding, protein producing, and intercellular communicating. The cell morphology together with transporter development indicates that these cells serve several functions during the development of the initial connection, and that these functions are different from the cells' final functions as transportation.


Assuntos
Túbulos Renais Coletores/embriologia , Néfrons/embriologia , Ureter/embriologia , Animais , Aquaporina 2/análise , Imageamento Tridimensional/métodos , Túbulos Renais Coletores/ultraestrutura , Proteínas de Membrana Transportadoras/análise , Camundongos , Microscopia Eletrônica/métodos , Néfrons/ultraestrutura , Ureter/ultraestrutura
4.
Biochem Biophys Res Commun ; 490(3): 1039-1044, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28668390

RESUMO

Vasopressin catalyzes aquaporin-2 phosphorylation at several serine sites in the C-terminal region. Compared with Ser-256 and Ser-269 phosphorylation, the role of Ser-261 phospho-regulation on vasopressin-regulated AQP2 apical translocation is largely unknown. In addition, recent discovery of transcytotic apical delivery of AQP2 made the concept of its intracellular trafficking even more complicated. In this study, we evaluated how intact phospho-AQP2 signals fit with the transcytosis trafficking model in Madin-Darby canine kidney cells. PS256 and pS269 signals were intracellularly detectable in wild-type AQP2 at the beginning of forskolin stimulation (1 min). These phospho-signals were detectable in basolateral membranes even after 10 min of stimulation. AQP2 stably inserted in the apical membrane increased pS269 and decreased pS261 signals. In an NDI-causing mutant P262L-AQP2, in which Ser-261 phospho-regulation is impaired, the pS256 and pS269 signals were detectable in the basolateral membranes with increased pS261 signals after forskolin stimulation. These results suggest that Ser-261 phospho-regulation is involved in pS256- and pS269-mediated AQP2 apical translocation.


Assuntos
Aquaporina 2/metabolismo , Animais , Aquaporina 2/análise , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Colforsina/farmacologia , Cães , Endocitose/efeitos dos fármacos , Células Madin Darby de Rim Canino , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Serina/análise , Serina/metabolismo
5.
Clin Exp Nephrol ; 20(6): 845-852, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26935049

RESUMO

BACKGROUND: Hypouricemia is pathognomonic in syndrome of inappropriate secretion of antidiuretic hormone (SIADH) but the underlying mechanism remains unclear. Based on the previous studies, we hypothesized that V1a receptor may play a principal role in inducing hypouricemia in SIADH and examined uric acid metabolism using a rat model. METHODS: Terlipressin (25 ng/h), a selective V1a agonist, was subcutaneously infused to 7-week-old male Wistar rats (n = 9). Control rats were infused with normal saline (n = 9). The rats were sacrificed to obtain kidney tissues 3 days after treatment. In addition to electrolyte metabolism, changes in expressions of the urate transporters including URAT1 (SLC22A12), GLUT9 (SLC2A9), ABCG2 and NPT1 (SLC17A1) were examined by western blotting and immunohistochemistry. RESULTS: In the terlipressin-treated rats, serum uric acid (UA) significantly decreased and the excretion of urinary UA significantly increased, resulting in marked increase in fractional excretion of UA. Although no change in the expression of URAT1, GLUT9 expression significantly decreased whereas the expressions of ABCG2 and NPT1 significantly increased in the terlipressin group. The results of immunohistochemistry corroborated with those of the western blotting. Aquaporin 2 expression did not change in the medulla, suggesting the independence of V2 receptor stimulation. CONCLUSION: Stimulation of V1a receptor induces the downregulation of GLUT9, reabsorption urate transporter, together with the upregulation of ABCG2 and NPT1, secretion urate transporters, all changes of which clearly lead to increase in renal UA clearance. Hypouricemia seen in SIADH is attributable to V1a receptor stimulation.


Assuntos
Síndrome de Secreção Inadequada de HAD/complicações , Transportadores de Ânions Orgânicos/fisiologia , Receptores de Vasopressinas/fisiologia , Erros Inatos do Transporte Tubular Renal/etiologia , Ácido Úrico/metabolismo , Cálculos Urinários/etiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Aquaporina 2/análise , Aquaporina 2/fisiologia , Lipressina/análogos & derivados , Lipressina/farmacologia , Masculino , Taxa de Depuração Metabólica , Proteínas de Transporte de Monossacarídeos/análise , Proteínas de Transporte de Monossacarídeos/fisiologia , Ratos , Ratos Wistar , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/fisiologia , Terlipressina
6.
Cell Physiol Biochem ; 36(2): 670-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25998606

RESUMO

BACKGROUND: Vasopressin induced trafficking of aquaporin-2 (AQP2) containing vesicles has been studied in kidney cell lines using conventional fluorescent proteins as tags. However, trafficking of fluorescent tagged AQP2, which resembles the vectorial translocation of native AQP2 from cytoplasm to apical membrane has not been demonstrated at real time. Using a photoconvertible fluorescent protein tag on AQP2 might allow the simultaneous tracking of two separate populations of AQP2 vesicle after subcellular local photoconversion. METHODS: A spacer was used to link a photoconvertible fluorescent protein (mEos2) to the amino-terminus of AQP2. The DNA constructs were expressed in mpkCCD cells. The trafficking of chimeric protein was visualized with high speed confocal microscopy in 4 dimensions. RESULTS: Chimeric AQP2 expressed in mpkCCD cell conferred osmotic water permeability to the cells. Subcellular photoconversion with a 405 nm laser pulse converted green chimeras to red chimeras locally. Forskolin stimulation triggered chimeric AQP2 to translocate from acidic organelles to apical plasma membrane. By serendipity, the rate of apical accumulation was found to increase when mEos2 was tagged to the carboxyl-terminus in at least one of the AQP2 molecules within the tetramer. CONCLUSION: Functional photoconvertible chimeric AQP2 was successfully expressed in mpkCCD cells, in which forskolin induced apical trafficking and accumulation of chimeric AQP2. The proof-of-concept to monitor two populations of AQP2 vesicle simultaneously was demonstrated.


Assuntos
Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Água/metabolismo , Animais , Aquaporina 2/análise , Aquaporina 2/genética , Linhagem Celular , Colforsina/farmacologia , Expressão Gênica , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Pressão Osmótica , Permeabilidade , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
7.
J Am Soc Nephrol ; 26(12): 2978-87, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25855780

RESUMO

P2Y12 receptor (P2Y12-R) signaling is mediated through Gi, ultimately reducing cellular cAMP levels. Because cAMP is a central modulator of arginine vasopressin (AVP)-induced water transport in the renal collecting duct (CD), we hypothesized that if expressed in the CD, P2Y12-R may play a role in renal handling of water in health and in nephrogenic diabetes insipidus. We found P2Y12-R mRNA expression in rat kidney, and immunolocalized its protein and aquaporin-2 (AQP2) in CD principal cells. Administration of clopidogrel bisulfate, an irreversible inhibitor of P2Y12-R, significantly increased urine concentration and AQP2 protein in the kidneys of Sprague-Dawley rats. Notably, clopidogrel did not alter urine concentration in Brattleboro rats that lack AVP. Clopidogrel administration also significantly ameliorated lithium-induced polyuria, improved urine concentrating ability and AQP2 protein abundance, and reversed the lithium-induced increase in free-water excretion, without decreasing blood or kidney tissue lithium levels. Clopidogrel administration also augmented the lithium-induced increase in urinary AVP excretion and suppressed the lithium-induced increase in urinary nitrates/nitrites (nitric oxide production) and 8-isoprostane (oxidative stress). Furthermore, selective blockade of P2Y12-R by the reversible antagonist PSB-0739 in primary cultures of rat inner medullary CD cells potentiated the expression of AQP2 and AQP3 mRNA, and cAMP production induced by dDAVP (desmopressin). In conclusion, pharmacologic blockade of renal P2Y12-R increases urinary concentrating ability by augmenting the effect of AVP on the kidney and ameliorates lithium-induced NDI by potentiating the action of AVP on the CD. This strategy may offer a novel and effective therapy for lithium-induced NDI.


Assuntos
Arginina Vasopressina/metabolismo , Diabetes Insípido Nefrogênico/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/fisiopatologia , Receptores Purinérgicos P2Y12/metabolismo , Animais , Aquaporina 2/análise , Aquaporina 2/efeitos dos fármacos , Aquaporina 2/urina , Arginina Vasopressina/efeitos dos fármacos , Arginina Vasopressina/urina , Clopidogrel , Desamino Arginina Vasopressina/metabolismo , Diabetes Insípido Nefrogênico/induzido quimicamente , Diabetes Insípido Nefrogênico/fisiopatologia , Capacidade de Concentração Renal/efeitos dos fármacos , Medula Renal/química , Túbulos Renais Coletores/química , Lítio , Masculino , Antagonistas do Receptor Purinérgico P2Y/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Ratos Sprague-Dawley , Receptores Purinérgicos P2Y12/análise , Receptores Purinérgicos P2Y12/genética , Ticlopidina/análogos & derivados , Ticlopidina/farmacologia , Água/metabolismo
8.
Biomed Res Int ; 2014: 619465, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25215286

RESUMO

Tannins, a group of major active components of Chinese rhubarb and widely distributed in nature, have a significant antidiarrhoeal activity. Aquaporins (AQPs) 2 and 3 play important roles in regulating water transfer during diarrhoea. The present study aims to determine the effect of the total tannins extract of rhubarb on aquaporins (AQPs) 2 and 3 in diarrhoea mice and HT-29 cells both induced by magnesium sulphate (MgSO4). Our results showed that rhubarb tannins extract (RTE) significantly decreased the faecal water content in colon and evaluation index of defecation of diarrhoea mice. Interestingly, RTE could markedly reduce the mRNA and protein expression levels of AQPs 2 and 3 in apical and lateral mucosal epithelial cells in the colons of diarrhoea mice and HT-29 cells both induced by MgSO4 in a dose-dependent manner. Furthermore, RTE suppressed the production of cyclic monophosphate- (cAMP-) dependent protein kinase A catalytic subunits α (PKA C-α) and phosphorylated cAMP response element-binding protein (p-CREB, Ser133) in MgSO4-induced HT-29 cells. Our data showed for the first time that RTE inhibit AQPs 2 and 3 expression in vivo and in vitro via downregulating PKA/p-CREB signal pathway, which accounts for the antidiarrhoeal effect of RTE.


Assuntos
Aquaporina 2/metabolismo , Aquaporina 3/metabolismo , Diarreia/metabolismo , Extratos Vegetais/farmacologia , Rheum/química , Taninos/farmacologia , Animais , Aquaporina 2/análise , Aquaporina 2/genética , Aquaporina 3/análise , Aquaporina 3/genética , Sobrevivência Celular/efeitos dos fármacos , Diarreia/induzido quimicamente , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Sulfato de Magnésio/efeitos adversos , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/química , Taninos/química
9.
Crit Care Med ; 42(10): e663-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25072760

RESUMO

OBJECTIVE: Acute renal tubular injury is a serious complication in the postoperative period, which is associated with high mortality and increased ICU stay. We aimed to demonstrate the protective effect of rhEPO against acute tubular injury induced by ischemia-reperfusion and to explore the mechanism of canonical transient receptor potential channel-6. DESIGN: Randomized laboratory animal study. SETTINGS: Animal research laboratory. INTERVENTIONS: Male Sprague-Dawley rats were randomly divided into three groups: the sham group, the control group, and the rhEPO group. Experimental acute tubular injury was established in rats by bilateral renal arterial occlusion for 30 minutes followed by reperfusion. MEASUREMENTS AND MAIN RESULTS: Blood samples were obtained for cystatin-C and neutrophil gelatinase-associated lipocalin measurements by enzyme-linked immunosorbance assays. Seventy-two hours after reperfusion, urine samples were collected for osmolality and fractional excretion of sodium (%) assays on a chemistry analyzer. Kidneys were harvested at 24, 48, and 72 hours after reperfusion. Transient receptor potential channel-6, aquaporin-2, and Na,K-ATPase expression in collecting ducts were studied by immunofluorescence and Western blot. Coimmunoprecipitations were also performed to identify the possible signalplex relation between transient receptor potential channel-6 and aquaporin-2 or Na,K-ATPase channels. RhEPO pretreatment significantly inhibited serum cystatin-C (2 hr: 453 ± 64 µg/L vs 337 ± 28 µg/L, p < 0.01), serum neutrophil gelatinase-associated lipocalin (72 hr: 1,175 ± 107 ng/L vs 1,737 ± 402 ng/L, p < 0.05), and urinary fractional excretion of sodium (%) increase (0.9 ± 0.1 vs 2.2 ± 0.8, p < 0.05) and alleviated the decrease of urinary osmolality (1,293 ± 101 mosmol/kg H2O vs 767 ± 91 mosmol/kg H2O, p < 0.05) induced by ischemia-reperfusion injury. Meanwhile, recombinant human erythropoietin greatly improved the ischemia-reperfusion-induced attenuation of transient receptor potential channel-6 expression (48 hr: 42% ± 2% vs 67% ± 2% and 72 hr: 55% ± 2% vs 66% ± 2%), as well as aquaporin-2 and Na,K-ATPase expression in collecting ducts. Transient receptor potential channel-6 functionally interacted with Na,K-ATPase but not aquaporin-2. CONCLUSIONS: Recombinant human erythropoietin pretreatment at the dose of 5,000 IU/kg potently prevented ischemia-reperfusion-induced acute tubular injury, which might be partly attributed to the restoring the effect of transient receptor potential channel-6 expression and collecting duct function.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Eritropoetina/uso terapêutico , Túbulos Renais Coletores/fisiopatologia , Traumatismo por Reperfusão/tratamento farmacológico , Canais de Cátion TRPC/fisiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Proteínas de Fase Aguda/fisiologia , Animais , Aquaporina 2/análise , Aquaporina 2/metabolismo , Aquaporina 2/fisiologia , Cistatina C/sangue , Cistatina C/fisiologia , Humanos , Túbulos Renais Coletores/química , Túbulos Renais Coletores/metabolismo , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/fisiologia , Masculino , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , ATPase Trocadora de Sódio-Potássio/análise , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Canais de Cátion TRPC/análise
10.
Biotech Histochem ; 89(5): 342-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24325682

RESUMO

Aquaporin 2 (AQP2) is a small, integral tetrameric plasma membrane protein that is expressed in mammalian kidneys. The specific constitution of this protein and its selective permeability to water means that AQP2 plays an important role in hypertonic urine production. Immunolocalization of AQP2 has been studied in humans, monkeys, sheep, dogs, rabbits, rats, mice and adult cattle. We analyzed the expression of AQP2 in kidneys of 7-month-old Polish-Friesian var. black and white male calves. AQP2 was localized in the principal cells of collecting ducts in medullary rays penetrating the renal cortex and in the collecting ducts of renal medulla. AQP2 was expressed most strongly in the apical plasma membrane, but expression was observed also in the intracellular vesicles and basolateral plasma membrane. Our study provides new information concerning the immunolocalization of AQP2 in calf kidneys.


Assuntos
Aquaporina 2/análise , Rim/química , Animais , Bovinos , Imuno-Histoquímica , Rim/ultraestrutura , Masculino
11.
Reprod Domest Anim ; 49(1): 17-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23826797

RESUMO

Four different aquaporins (AQP1, 2, 5 and 9), integral membrane water channels that facilitate rapid passive movement of water, were immuno-localized in the excurrent ducts collected from sexually mature cats during orchiectomy. Aquaporins 1, 2 and 9, were immuno-localized at distinct levels, whereas AQP5 was undetectable all along the feline genital tract. No immunoreactivity was present at the level of the rete testis with any of the antibodies tested. In the efferent ducts, AQP1-immunoreactivity was strongly evidenced at the apical surface of the non-ciliated cells, and AQP9-immunoreactivity was shown at the periphery of both ciliated and non-ciliated cells. Aquaporins 2 was absent in the caput epididymidis, either in the efferent ducts or in the epididymal duct. Otherwise, AQP2 was increasingly localized at the adluminal surface of principal cells from the corpus to the cauda epididymidis and more weakly in the vas deferens epithelium. The supranuclear zone of the epididymal principal cells was AQP9-immunoreactive throughout the duct, with the exclusion of the vacuolated sub-region of the caput and with higher reaction intensity in the cauda region. AQP1 was present in the blood vessels all along the genital tract. AQP1 was expressed also in the smooth muscle layer of the vas deferens. The tested AQP molecules showed a different expression pattern in comparison with laboratory mammals, primates and the dog, unique other carnivore species studied to date. The present information is possibly useful in regard to the regional morphology of the feline epididymis and correlated functions, which are still a matter of debate.


Assuntos
Aquaporinas/análise , Gatos , Genitália Masculina/química , Imuno-Histoquímica/veterinária , Animais , Aquagliceroporinas/análise , Aquaporina 1/análise , Aquaporina 2/análise , Aquaporina 5/análise , Epididimo/química , Células Intersticiais do Testículo/química , Masculino , Testículo/química , Ducto Deferente/química
12.
J Sex Med ; 10(2): 342-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23110393

RESUMO

INTRODUCTION: Aquaporins (AQPs) are membrane proteins that facilitate water movement across biological membranes. Vaginal lubrication may be mediated by blood flow and other potential mechanisms related to transudation of fluid. The most common female sexual dysfunction in diabetes is inadequate vaginal lubrication. AIM: To investigate the expression of AQP1-3 in vaginal tissue of diabetes mellitus rats. METHODS: Female Sprague-Dawley rats (N = 20) were randomly divided into group A (12-week-old nondiabetic control, N = 5), group B (16-week-old nondiabetes control, N = 5), group C (12-week-old diabetes mellitus rats, N = 5), and group D (16-week-old diabetes mellitus rats, N = 5). Vaginal fluid was measured by fluid weight absorbed by cotton swabs after pelvic nerve electrostimulation and anterior vaginal tissue was dissected for determining the expression of AQP1-3 by immunohistochemical study and Western blot. MAIN OUTCOME MEASURES: The expression of AQP1-3 was determined in the vagina of diabetes mellitus rats by Western blot. RESULTS: There are no significant differences in serum estradiol concentrations of rats among these groups (P > 0.05). Vaginal fluid was significantly lower in group C (2.7 ± 0.67 mg) and group D (2.5 ± 1.03 mg) than in group A (5.74 ± 1.23 mg) and group B (5.5 ± 1.08 mg) (P < 0.05), respectively. The protein expressions of AQP1-3 were significantly lower in group C (43.40 ± 4.83, 60.60 ± 12.80, and 59.60 ± 6.95) and group D (20.81 ± 2.86, 47.80 ± 11.43, and 54.20 ± 5.26) than in group A (116.62 ± 3.21, 110.81 ± 8.044, and 108.80 ± 4.97) and group B (122.12 ± 14.54, 111.21 ± 15.07, and 106.40 ± 4.16) (P < 0.05), respectively. CONCLUSIONS: Decreased vaginal fluid in diabetes mellitus rats after electrostimulation may be partly due to estrogen-independent decreases of AQP1-3 in vaginal tissue.


Assuntos
Aquaporina 1/análise , Aquaporina 2/análise , Aquaporina 3/análise , Diabetes Mellitus Experimental/patologia , Vagina/patologia , Animais , Western Blotting , Estimulação Elétrica , Feminino , Técnicas Imunoenzimáticas , Ratos , Ratos Sprague-Dawley , Vagina/metabolismo
13.
Cell Physiol Biochem ; 30(5): 1148-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23171819

RESUMO

BACKGROUND: In the renal collecting duct, vasopressin regulates water permeability by a process that involves stimulation of adenylyl cyclase activity, cAMP production and subsequent translocation of water channel aquaporin-2 (AQP2) into the apical plasma membrane. We have previously shown that in cos 1 cells in vitro, both adenylyl cyclase activity and cAMP production can be regulated by VACM-1, a cul 5 gene that forms complexes involved in protein ubiquitination and subsequent degradation. METHODS: To extend these observations further, the effects of changes in hydration state on the expression of VACM-1 at the mRNA and the protein level were examined in rats deprived of water (WD) for 24 hrs. RESULTS: In the kidney of WD rats Western blot analyses of kidney tissue showed that the decrease in VACM-1 protein concentration was correlated with the increase in the AQP2 protein level. The immunostaining data suggested that VACM-1/cul5 may be decreased in renal collecting duct but increases in the vasculature of the inner medullary region in response to WD. To determine the possible consequences of the WD dependent decrease in VACM-1/cul5, we next examined the effects of VACM-1 expression on AQP2 protein in vitro. Immunocytochemistry and Western blot analyses data indicate that VACM-1/cul5 expression in MDCK line stably expressing AQP2 gene and in cos 1 cells co-transfected with the AQP2 and VACM-1/cul5 cDNAs decreased AQP2 protein concentration when compared to the vector transfected control groups. CONCLUSION: In summary, our data demonstrate that VACM-1 is involved in the regulation of AQP2 protein concentration and may play a role in regulating water balance.


Assuntos
Aquaporina 2/análise , Proteínas Culina/metabolismo , Receptores de Vasopressinas/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas Culina/genética , Cães , Rim/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Vasopressinas/genética
15.
Am J Physiol Renal Physiol ; 301(6): F1303-13, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21880835

RESUMO

It was hypothesized that cyclooxygenase-2 (COX-2) activity promotes urine concentrating ability through stimulation of vasopressin (AVP) release after water deprivation (WD). COX-2-deficient (COX-2(-/-), C57BL/6) and wild-type (WT) mice were water deprived for 24 h, and water balance, central AVP mRNA and peptide level, AVP plasma concentration, and AVP-regulated renal transport protein abundances were measured. In male COX-2(-/-), basal urine output and water intake were elevated while urine osmolality was decreased compared with WT. Water deprivation resulted in lower urine osmolality, higher plasma osmolality in COX-2(-/-) mice irrespective of gender. Hypothalamic AVP mRNA level increased and was unchanged between COX-2(-/-) and WT after WD. AVP peptide content was higher in COX-2(-/-) compared with WT. At baseline, plasma AVP concentration was elevated in conscious chronically catheterized COX-2(-/-) mice, but after WD plasma AVP was unchanged between COX-2(-/-) and WT mice (43 ± 11 vs. 70 ± 16 pg/ml). Renal V2 receptor abundance was downregulated in COX-2(-/-) mice. Medullary interstitial osmolality increased and did not differ between COX-2(-/-) and WT after WD. Aquaporin-2 (AQP2; cortex-outer medulla), AQP3 (all regions), and UT-A1 (inner medulla) protein abundances were elevated in COX-2(-/-) at baseline and further increased after WD. COX-2(-/-) mice had elevated plasma urea and creatinine and accumulation of small subcapsular glomeruli. In conclusion, hypothalamic COX-2 activity is not necessary for enhanced AVP expression and secretion in response to water deprivation. Renal medullary COX-2 activity negatively regulates AQP2 and -3. The urine concentrating defect in COX-2(-/-) is likely caused by developmental glomerular injury and not dysregulation of AVP or collecting duct aquaporins.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Capacidade de Concentração Renal , Animais , Aquaporina 2/análise , Aquaporina 3/análise , Arginina Vasopressina/sangue , Arginina Vasopressina/metabolismo , Creatinina/sangue , Ciclo-Oxigenase 2/genética , Feminino , Hipotálamo/enzimologia , Rim/metabolismo , Masculino , Proteínas de Membrana Transportadoras/análise , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Vasopressinas/análise , Ureia/sangue , Privação de Água/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Transportadores de Ureia
16.
Cell Physiol Biochem ; 27(3-4): 411-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21471730

RESUMO

Previous studies using bloodstream form Trypanosoma brucei have shown that glycerol transport in this parasite occurs via specific membrane proteins, namely a glycerol transporter and glycerol channels [1]. Later, we cloned, expressed and characterized the transport properties of all three aquaglyceroporins (AQP1-3) [2], which were found permeable for water, glycerol and other small uncharged solutes like dihydroxyacetone [3]. Here, we report on the cellular localization of TbAQP1 and TbAQP3 in bloodstream form trypanosomes. Indirect immunofluorescence analysis showed that TbAQP1 is exclusively localized in the flagellar membrane, whereas TbAQP3 was found in the plasma membrane.In addition, we analyzed the functions of all 3 AQPs, using an inducible inheritable double-stranded RNA interference methodology. All AQP knockdown cell lines were still able to survive hypo-osmotic stress conditions, except AQP2 knockdown parasites. Depleted TbAQP2 negatively impacted cell growth and the regulatory volume recovery, whereas AQP1 und 3 knockdown trypanosomes displayed phenotypes consistent with their localization in external membranes. A simultaneous knockdown of all 3 AQPs showed that the cells were able to substitute the missing glycerol uptake capability through a putative glycerol transporter.


Assuntos
Aquagliceroporinas/fisiologia , Glicerol/metabolismo , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/metabolismo , Aquagliceroporinas/análise , Aquagliceroporinas/genética , Aquaporina 1/análise , Aquaporina 1/genética , Aquaporina 1/fisiologia , Aquaporina 2/análise , Aquaporina 2/genética , Aquaporina 2/fisiologia , Aquaporina 3/análise , Aquaporina 3/genética , Aquaporina 3/fisiologia , Transporte Biológico , Linhagem Celular , Técnica Indireta de Fluorescência para Anticorpo , Técnicas de Silenciamento de Genes , Glicerol/farmacologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Piruvatos/metabolismo , Equilíbrio Hidroeletrolítico
17.
J Am Soc Nephrol ; 22(2): 253-61, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21051735

RESUMO

Lithium-induced nephrogenic diabetes insipidus (NDI) is accompanied by polyuria, downregulation of aquaporin 2 (AQP2), and cellular remodeling of the collecting duct (CD). The amiloride-sensitive epithelial sodium channel (ENaC) is a likely candidate for lithium entry. Here, we subjected transgenic mice lacking αENaC specifically in the CD (knockout [KO] mice) and littermate controls to chronic lithium treatment. In contrast to control mice, KO mice did not markedly increase their water intake. Furthermore, KO mice did not demonstrate the polyuria and reduction in urine osmolality induced by lithium treatment in the control mice. Lithium treatment reduced AQP2 protein levels in the cortex/outer medulla and inner medulla (IM) of control mice but only partially reduced AQP2 levels in the IM of KO mice. Furthermore, lithium induced expression of H(+)-ATPase in the IM of control mice but not KO mice. In conclusion, the absence of functional ENaC in the CD protects mice from lithium-induced NDI. These data support the hypothesis that ENaC-mediated lithium entry into the CD principal cells contributes to the pathogenesis of lithium-induced NDI.


Assuntos
Diabetes Insípido Nefrogênico/induzido quimicamente , Canais Epiteliais de Sódio/fisiologia , Cloreto de Lítio/toxicidade , Absorção , Animais , Aquaporina 2/análise , Túbulos Renais Coletores/metabolismo , Túbulos Renais Coletores/patologia , Cloreto de Lítio/farmacocinética , Camundongos , Camundongos Knockout , ATPases Translocadoras de Prótons/análise
18.
Kidney Int ; 78(7): 650-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20613715

RESUMO

Patients with proteinuric kidney diseases often have symptoms of salt and water retention. It has been hypothesized that dysregulated sodium absorption is due to increased proteolytic cleavage of epithelial sodium channels (ENaCs) and increased Na,K-ATPase expression. Microarray analysis identified a reduction in kidney corin mRNA expression in rat models of puromycin aminonucleoside-induced nephrotic syndrome and acute anti-Thy1 glomerulonephritis (GN). As atrial natriuretic peptide (ANP) resistance is a mechanism accounting for volume retention, we analyzed the renal expression and function of corin; a type II transmembrane serine protease that converts pro-ANP to active ANP. Immunohistochemical analysis found that corin colocalized with ANP. The nephrotic and glomerulonephritic models exhibited concomitant increased pro-ANP and decreased ANP protein levels in the kidney consistent with low amounts of corin. Importantly, kidneys from corin knockout mice had increased amounts of renal ß-ENaC and its activators, phosphodiesterase (PDE) 5 and protein kinase G II, when compared to wild-type mice. A similar expression profile was also found in cell culture suggesting the increase in PDE5 and kinase G II could account for the increase in ß-ENaC seen in nephrotic syndrome and GN. Thus, we suggest that corin might be involved in the salt retention seen in glomerular diseases.


Assuntos
Rim/metabolismo , Proteinúria/metabolismo , Serina Endopeptidases/fisiologia , Sódio/metabolismo , Animais , Aquaporina 2/análise , Fator Natriurético Atrial/biossíntese , AMP Cíclico/biossíntese , Canais Epiteliais de Sódio/análise , Glomerulonefrite/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Síndrome Nefrótica/metabolismo , Ratos , Ratos Wistar
20.
Kidney Int ; 76(2): 137-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19564856

RESUMO

Mice deficient in the angiotensin II type 1a (AT(1a)) receptor demonstrate a vasopressin-resistant nephrogenic diabetes insipidus. These knockout mice exhibit a threefold increase in 24-h urine excretion. Neither 2 weeks of exogenous vasopressin nor 5 days of fluid restriction reversed this polyuric state. This nephrogenic diabetes insipidus was associated with reductions in adenylyl cyclase protein and in the phosphorylated mitogen-activated protein kinase extracellular signal-regulated kinase 1/2. The results support an important interaction between vasopressin and angiotensin II in maximal urinary concentration.


Assuntos
Angiotensina II/fisiologia , Arginina Vasopressina/farmacologia , Diabetes Insípido Nefrogênico/etiologia , Receptor Tipo 1 de Angiotensina/deficiência , Equilíbrio Hidroeletrolítico/fisiologia , Adenilil Ciclases/análise , Animais , Aquaporina 2/análise , Diabetes Insípido Nefrogênico/fisiopatologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/análise , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Poliúria , Urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA